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Procedures for Adjusting Regional Regression Models 
of Urban-Runoff Quality Using Local Data
By Anne B. Hoos and Joy S. Lizarraga

ABSTRACT

Statistical operations termed model- 
adjustment procedures (MAP) can be used to 
incorporate local data into existing regression 
models to improve the prediction of urban-runoff 
quality. Each MAP is a form of regression analy­ 
sis in which the local data base is used as a cali­ 
bration data set. Regression coefficients are deter­ 
mined from the local data base, and the resulting 
adjusted regression models can then be used to 
predict storm-runoff quality at unmonitored sites. 
The response variable in the regression analyses 
is the observed load or mean concentration of a 
constituent in storm runoff for a single storm. The 
set of explanatory variables used in the regression 
analyses is different for each MAP, but always 
includes the predicted value of load or mean con­ 
centration from a regional regression model. The 
four MAP's examined in this study were 
(1) single-factor regression against the regional 
model prediction, Pu (MAP-1F-P); (2) regression 
against Pu (MAP-R-P); (3) regression against Pu 
and additional local variables (MAP-R-P+nV); 
and (4) a weighted combination of Pu and a local- 
regression prediction (MAP-W).

The procedures were tested using split- 
sample analysis, with data from three cities 
included in the Nationwide Urban Runoff Pro­ 
gram: Denver, Colorado; Bellevue, Washington; 
and Knoxville, Tennessee. The MAP that pro­ 
vided the greatest predictive accuracy for the ver­ 
ification data set differed among the three test 
data bases and among model types (MAP-W for 
Denver and Knoxville, MAP-1F-P and MAP-R-P

for Bellevue load models, and MAP-R-P+nV for 
Bellevue concentration models) and, in many 
cases, was not clearly indicated by the values of 
standard error of estimate for the calibration data 
set. A scheme to guide MAP selection, based on 
exploratory data analysis of the calibration data 
set, is presented and tested.

The MAP's were tested for sensitivity to 
the size of a calibration data set. As expected, pre­ 
dictive accuracy of all MAP's for the verification 
data set decreased as the calibration data-set size 
decreased, but predictive accuracy was not as sen­ 
sitive for the MAP's as it was for the local regres­ 
sion models.

INTRODUCTION

Urban land use has been shown to be a major 
source of nonpoint-source pollution. Recognizing this, 
the amendments of 1987 to the Clean Water Act 
require that cities with populations of more than 
100,000 provide estimates of storm-runoff loads from 
urban areas to receiving streams (U.S. Environmental 
Protection Agency, 1990, p. 48070). City engineers 
have a variety of options for developing these esti­ 
mates, ranging from simple empirical techniques 
(Young and others, 1979; U.S. Environmental Protec­ 
tion Agency, 1983; Schueler, 1987) to more advanced 
statistical regression (Driver and Tasker, 1990) and 
conceptually-based models (reviewed in Huber, 1986; 
Nix, 1991). The Driver-Tasker models are regression 
models of storm-runoff quality (constituent load and 
mean concentration) on physical, land-use, and 
climatic characteristics from the data base of the 
Nationwide Urban Runoff Program (NURP). Separate 
sets of regression models were developed for
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mean-annual runoff quality and for single-storm run­ 
off quality.

Regardless of the method selected, provision 
should be made for adjustment of the prediction using 
local urban-runoff quality data currently being col­ 
lected in each city to meet additional regulatory 
requirements (U.S. Environmental Protection Agency, 
1990, p. 48069-48070). The local storm-load data 
base for each city will consist in most cases of about 3 
storms at 5 to 10 sites, or about 15 to 30 load observa­ 
tions.

A procedure to adjust the regional single-storm 
models (Driver and Tasker, 1990) for a particular city, 
using a small data base from that city, was presented in 
a recent study by Hoos (1991). Although such a 
model-adjustment procedure (MAP) may seem to be a 
reasonable approach, at least intuitively, several unan­ 
swered questions come to the fore about the validity of 
this procedure and of possible alternative procedures. 
For example:
1. What are the assumptions for the several proposed 

MAP's, and can these be codified for potential 
adjusters as they examine their local data bases? 
For example, is there a minimum size for a local 
data base to be used in the various MAP's, below 
which size the assumptions in the procedures are 
not valid?

2. Of all statistically valid MAP's, which will provide 
the most reliable predictions for unmonitored 
sites?

3. Do the models for constituent load differ from the 
models for constituent mean concentration with 
respect to their suitability for MAP's?

4. How can the uncertainty of an adjusted-model pre­ 
diction for an unmonitored site be estimated?

Purpose and Scope

The purpose of this investigation is to determine 
appropriate statistical methods for combining or 
weighting regional model predictions of storm-runoff 
quality with local data. This report describes
1. The assumptions for four proposed MAP's, and 

how these assumptions translate into require­ 
ments for the local data base,

2. A scheme for selecting the appropriate adjustment 
procedure based on exploratory data analysis of 
the local data base,

3. Results from split-sample tests of the four proposed 
MAP's and the selection scheme, and

4. Expressions for calculating standard errors of pre­ 
diction and confidence intervals for unmonitored 
sites using each of the proposed MAP's.

REGIONAL REGRESSION MODELS 
OF URBAN-RUNOFF QUALITY

Urban-runoff quality at unmonitored sites is 
commonly estimated using either deterministic models 
of washoff and transport processes in the watershed or 
statistical models calibrated with observed data at 
other sites. Although in the case of estimating at 
unmonitored sites, neither type of model can be cali­ 
brated with at-site data, the statistical-model approach 
has the advantage of providing a measure of the uncer­ 
tainty in the model predictions. This advantage could 
be an important consideration for city engineers or 
planners responsible for developing remedial water- 
quality management programs or designing additional 
data-collection programs.

Regression models were developed by the U.S. 
Geological Survey (Driver and Tasker, 1990) from 
regression analysis of the NURP national data base 
(Mustard and others, 1987; U.S. Environmental Pro­ 
tection Agency, 1983). Separate sets of regression 
models were developed for mean-annual runoff qual­ 
ity and for single-storm runoff quality. The single- 
storm regression models relate storm-runoff quality 
(constituent load and mean concentration, the response 
variables) from a single storm to easily measured 
physical, land-use, and climatic characteristics (the 
explanatory variables). Models were developed for 11 
constituents: chemical oxygen demand (COD), sus­ 
pended solids (SS), dissolved solids (DS), total nitro­ 
gen (TN), total ammonia plus organic nitrogen as 
nitrogen (TKN), total phosphorus (TP), dissolved 
phosphorus (DP), total-recoverable cadmium (CD), 
total-recoverable copper (CU), total-recoverable lead 
(PB), and total-recoverable zinc (ZN). A set of three 
models corresponding to three regional divisions was 
developed for each constituent load (Driver and 
Tasker, 1990, tables 1 and 3) and for each constituent 
mean concentration (Driver and Tasker, 1990, table 5). 
The basis for the regional divisions was mean annual 
rainfall (region I, less than 20 in.; region II, 20-40 in.; 
region III, greater than 40 in.), which provided the best 
results of seven bases tested for regionalization or 
stratification (Driver and Tasker, 1990, p. 5). Standard
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errors of estimate (SE) were generally smallest for 
region I models and largest for region III models 
(table 1), indicating that as mean annual rainfall 
increases, the ability to estimate storm-runoff quality 
decreases.

Two sets of models of storm-runoff load were 
developed for each constituent and for each region. 
The first set, referred to as stepwise-analysis regres­ 
sion models, was developed from a stepwise regres­ 
sion analysis of 13 candidate explanatory variables; 
the number of explanatory variables selected as signif­ 
icant for a particular model ranged from 3 to 6 (Driver 
and Tasker, 1990, table 1). The second set included 
only the three most significant explanatory variables: 
total storm rainfall, total contributing drainage area, 
and impervious area (Driver and Tasker, 1990, 
table 3). For the purpose of this report, the stepwise- 
analysis load and concentration models will be 
referred to as Lsa and Csa, respectively, and the 3- 
variable load models as L3. The Lsa models fit the 
observed data better than L3 models (table 1). SE mea­ 
sures fit of observed data rather than predictive accu­ 
racy. The fit of the load and concentration models 
should not be compared on the basis of SE because the 
response variable units in each case were different.

A final set of national regression models was 
developed to predict load from an average storm 
(response variable) based upon five explanatory vari­ 
ables (Driver and Tasker, 1990, table 10). Estimates 
from these models can be used in conjunction with an 
estimate of the average number of storms per year to 
yield an estimate of mean annual load.

LOCAL URBAN-RUNOFF QUALITY DATA

Faced with the need to develop estimates of 
storm-runoff quality for a large number of unmoni- 
tored sites, a city engineer might wish to employ the 
published regression models, provided the published 
standard errors of estimate are deemed acceptable 
(table 1). A separate option would be to test the pub­ 
lished models by comparing regional single-storm 
model (henceforth called regional model) estimates 
with available local urban-runoff quality data to 
appraise the predictive accuracy of the regional mod­ 
els for the particular city of interest. The magnitude of 
the model errors could indicate the relative accuracy 
and usefulness of these models for estimating loads 
and mean concentrations of constituents for water­ 
sheds in that city.

Table 1. Standard errors of estimate for regional regression models of storm- 
runoff loads and mean concentrations of selected constituents
[Values for standard error of estimate (SE) from Driver and Tasker, 1990, tables 2, 3, and 6; COD, 
chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total recoverable lead; SS, suspended 
solids; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, stepwise-analysis regres­ 
sion model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff 
load]

Standard error of estimate

Model

COD.Lsa
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa
PB.Csa
PB.L3

SS.Lsa
SS.Csa
SS.L3

Region 1

Percent
86
61

116
71
60

129
141

88
166

230
131
251

Log
0.324

.245

.403

.277

.242

.431

.455

.331

.500

.589

.434

.613

Region II

Percent
97

79
106
106
85

107
131
103
135

165
128
173

Log
0.355

.303

.376

.377

.321

.381

.435

.371

.442

.498

.427

.512

Region

Percent
169

78
186
165

85
184
227
179
228

165
178
290

III

Log
0.505

.300

.531

.498

.321

.529

.586

.414

.586

.627

.519

.651

Local Urban-Runoff Quality Data



When regional-model results prove inaccurate 
for estimating storm-runoff quality in a particular city, 
the city engineer might wish to use local data to adjust 
(through a partial recalibration procedure) the regional 
models and obtain more accurate results. Local data 
bases used for the adjustment of regional models 
should possess certain attributes if the adjustments are 
to result in more accurate estimates. Among these 
attributes are the following:
1. The monitoring sites in the local data base should 

represent a wide range of conditions of physical 
characteristics (size of drainage area, percentage 
of impervious area) and land-use characteristics. 
This will ensure that the values for these explana­ 
tory variables at any unmonitored site for which 
an estimate is desired will fall within the range 
represented by the local data base. It may be use­ 
ful to compare the range represented by the local 
data base with the range represented by the 
regional NURP data base (Driver and Tasker, 
1990, table 4).

2. The monitored storms in the local data base should 
represent a wide range of storm characteristics 
(total storm rainfall, duration of each storm, and

antecedent conditions), for the same reason cited 
previously. Although explanatory variables 
related to antecedent conditions (for example, 
preceding number of dry days, amount of rainfall 
during the preceding day, 3 days, or 7 days) are 
not included in the regional models, such vari­ 
ables could account for some of the unexplained 
error in these models and, therefore, may be can­ 
didates for use in adjusting the models. 
The following discussion illustrates the use of a 

local data base (for a hypothetical city X, located in 
region II) to test the validity of the regional models for 
a particular city. Data for storm-runoff load of COD 
have been collected during 3 storms at each of 5 sites 
in city X, with a resulting data base of 15 observations. 
For each of these observed loads, a corresponding pre­ 
dicted load can be computed by evaluating the explan­ 
atory variables and applying the regional model for 
COD for region II. The observed and corresponding 
predicted values are shown in figure 1 for each of the 
15 events. Examination of the pattern of correspon­ 
dence (or lack of correspondence) between observed 
and corresponding predicted values, and knowledge of

10,000

1,000

100

10

Predicted from regional model 

Observed in storm sample

I___I I I I___I J___I

1A 1B 1C 2A 2B 2C 3A 3B 3C 4A 4B 4C 5A 5B 5C

SITE-STORM NUMBER

Figure 1 . Observed and predicted chemical oxygen demand load in storm runoff for city X's 
local data base.
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the local data base and NURP data base for region II, 
can lead to one of the following conclusions.

One possible conclusion is that the site or storm 
characteristics (explanatory variables) represented by 
the local data base are not representative of the full 
range of storm-runoff conditions in city X, whereas 
the characteristics of the calibration data set for the 
region II models are representative. Consequently, the 
regional-model predictions, although appearing inac­ 
curate for estimating the local data, might be more 
accurate estimates for a typical unmonitored site and 
typical storm in city X. Explanations for drawing such 
a conclusion might include (1) knowledge that sites in 
the local data base are influenced by point-source dis­ 
charges, or (2) knowledge that storms monitored for 
the local data base are atypical of average storm char­ 
acteristics for city X.

A second possible conclusion is that the 
regional model predictions are biased relative to actual 
storm-runoff conditions in city X, and that the obser­ 
vations in the local data base are representative of 
local conditions. Conditions supporting this conclu­ 
sion might include (1) the values of the explanatory 
variables for watersheds in city X are consistently out­ 
side the range of values for explanatory variables in 
the NURP region II data base (for example, mean 
annual rainfall in city X is higher than for any city 
included in the region II data base); and (2) a physical, 
land-use, or climatic variable not tested or included, 
but responsible for some of the unexplained error in 
the regional model, might have a different range of 
values for city X relative to cities included in the 
NURP region II data base (for example, drainage- 
structure construction materials or practices used in 
city X might be different from materials or practices 
used in any NURP region II city; the range of anteced­ 
ent conditions occurring in city X might be different 
from the range of antecedent conditions occurring in 
any NURP region II city). If either of these two condi­ 
tions can be shown to exist in city X, then it might be 
valid to adjust the regional models for application to 
unmonitored sites.

PROCEDURES FOR ADJUSTING 
REGIONAL REGRESSION MODELS 
OF URBAN-RUNOFF QUALITY 
USING LOCAL DATA

Before any particular adjustment procedure for 
a constituent model is considered, it is helpful to

examine the pattern of correspondence between the 
observed and predicted values from the local data 
base. The pattern illustrated in figure 1 has the follow­ 
ing characteristics, both of which tend to indicate that 
model adjustment is a valid approach:
1. The direction of bias of predicted values relative to 

observed values is consistent (in this case, a con­ 
sistent positive bias), and

2. The predicted and observed values are significantly 
and positively correlated, so that the variation in 
predicted values explains much of the variation 
in the observed values. This correlation implies 
that the regional model explains or models the 
relation between the response variable and the 
explanatory variables.
Consistent direction of bias in the local data 

base (predicted and observed data pairs) can be deter­ 
mined by a signed rank test on the paired data (Iman 
and Conover, 1983, p. 256-260). Correlation of the 
predicted and observed data can be determined by the 
test for significance of the rank correlation coefficient, 
Spearman's rho (rs) (Iman and Conover, 1983, p. 341). 
If the test statistic from each of these tests is signifi­ 
cant at the selected level, then it might be concluded 
that a MAP is a valid approach.

Model-Adjustment Procedures

All of the MAP's considered in this report are in 
the form of a regression analysis (or, in one case, a 
weighting of the results of two separate regression 
analyses) in which local data are used for calibration. 
Regression coefficients are determined using local 
data, and the resulting adjusted regression models are 
then used to predict storm-runoff quality at unmoni­ 
tored sites. The response variable in the regression 
analyses is the observed load or mean concentration of 
a constituent in storm runoff for a single storm. The set 
of explanatory variables used in the regression analy­ 
ses is different for each procedure, but always includes 
the predicted value of load or mean concentration 
from the regional single-storm model. The name for 
each procedure is an acronym describing the form of 
the procedure and the set of explanatory variables: for 
example, MAP-R-P denotes a model-adjustment pro­ 
cedure (MAP) in the form of a regression (R) on the 
single explanatory variable, predicted value (P) from 
the regional single-storm model.

Values for the response and explanatory vari­ 
ables were transformed to log units for the regression

Procedures for Adjusting Regional Regression Models of Urban-Runoff Quality Using Local Data 5



analysis. From the analysis by Driver and Tasker 
(1990, p. 6) of the large NURP database, both 
response and explanatory variables most closely 
approximate a normal distribution when a log transfor­ 
mation is used. Because the response variables and 
most of the explanatory variables used in the adjust­ 
ment procedures were also included in Driver and 
Tasker's analysis, it is appropriate to use the same 
transformation.

Single-Factor Regression Against Regional 
Prediction

Single-factor regression against the predicted 
value from the regional model, or MAP-1F-P, is a 
modification of simple linear regression. In this modi­ 
fication, the coefficient, 6 1? shown in equation 1 is 
forced to unity (suggested by Timothy A. Cohn and 
Gary D. Tasker, U.S. Geological Survey, oral com- 
mun., 1990; documented in Hoos, 1991). The log- 
transformed observed values of load or concentration 
in the calibration data set (the local data base) are 
regressed against the corresponding log-transformed 
predicted values from the unadjusted regional model 
using only one calibration coefficient:

(1)

where
O is observed values of storm-runoff load or

mean concentration,
Pu is predicted values of storm-runoff load or 

mean concentration from the unadjusted 
regional model,

BQ is the single calibration coefficient, and 
B! is the regression coefficient forced to unity. 

Because MAP-1F-P is not a true regression procedure, 
the value for the calibration coefficient, B0 , is deter­ 
mined from the calibration data set (local data base) 
according to a simple formula rather than from the 
standard regression formula. Using equation 1, the 
value for B0 can be computed as:

(3 0 = log0-logPM , (2)

where the overbar denotes mean value.
An adjusted prediction at an unmonitored site / 

can then be calculated (from the detransformation of 
eq 1) as

(3)

where
Pai is the adjusted-model predicted value of

storm-runoff load or mean concentration at 
unmonitored site /, 

B'0 is 106°,
Pui is the unadjusted-regional-model predicted 

value of storm-runoff load or mean con­ 
centration at unmonitored site /', and 

BCF is a bias correction factor.
The BCF must be included in the detransformed 

model if an unbiased estimate of the mean is to be 
obtained (Duan, 1983; Miller, 1984; Driver and 
Tasker, 1990). The BCF is calculated for each adjust­ 
ment procedure using a nonparametric method based 
on the average residuals in original units:

BCF = 10 (4)

where
61 is the residual for observation / from the cali­ 

bration data set, in log units, and
n is the number of observations. 

Because MAP-1F-P is not a least-squares regression 
procedure, outliers in the calibration data set can pro­ 
duce extremely large values for SE and BCF. MAP- 
1F-P should be rejected for such a data set, in favor of 
another MAP.

MAP-1F-P is appropriate under two sets of con­ 
ditions: (1) a small calibration data set (the local data 
base might consist of only 15 data pairs) argues 
against attempting to calibrate more than one coeffi­ 
cient, and (2) the relation between explanatory vari­ 
ables and the response variable appears to be 
adequately modeled by the regional model (rs is sig­ 
nificant and positive) and the predicted values are 
biased in a consistent direction (test statistic from 
signed rank test is significant) and by a constant factor.

Regression Against Regional Prediction

In the second procedure (MAP-R-P), log- 
transformed observed values are regressed against a 
single independent variable (log-transformed pre­ 
dicted values from the unadjusted regional model) in a 
standard linear regression:

logO = (5)
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where
BQ,BI are coefficients determined from a simple lin­ 

ear regression analysis of the calibration 
data set (local data base).

An adjusted prediction at an unmonitored site / (Pai )
can then be calculated (from the detransformation of
eq 5) as

P =
.Pi (6)

There are two cases in which the use of this 
MAP could be preferable to MAP-1F-P. In areas 
where the calibration data set is relatively large (more 
than 20 observations), calibration of two regression 
coefficients can be justified and might provide more 
accurate results. In other areas, adjustment by a single 
factor might not be adequate because the difference 
between the log-transformed observed and predicted 
values may be a function of the magnitude of the val­ 
ues. Inclusion of the additional B } regression coeffi­ 
cient could model this functionality (W.O. Thomas, 
Jr., U.S. Geological Survey, oral commun., 1991).

Regression Against Regional Prediction and 
Additional Local Variables

In the third procedure (MAP-R-P+nV), log- 
transformed observed values are regressed against 
several independent variables (including the log- 
transformed predicted values from the unadjusted 
regional model) in a multiple linear regression:

logO = Po
(7)

where
B0,Bl,...,Bn+ i are coefficients determined from

multiple linear regression analysis
of the calibration data set (local
data base), and 

Vj,V2v,Vn are values of additional explanatory
variables from the calibration data
set.

An adjusted prediction at an unmonitored site / (Pai) 
can then be calculated (from the detransformation of 
eq 7) as

(8)

x V,
MI xBCF .

MAP-R-P+nV might be appropriate when the 
pattern of correspondence between O and Pu indicates 
that a MAP based on Pu alone (MAP-1F-P or MAP-R- 
P) is not appropriate (when the test statistic from either 
the signed rank test or the test for significance of rs is 
not significant). The most likely candidates for inclu­ 
sion as additional explanatory variables are physical, 
land-use, or climatic variables not tested or included in 
the regional model, but suspected of being significant 
and a possible source of unexplained error. Driver and 
Tasker (1990, p. 11-12) presented antecedent dry days 
as such a variable (although the evidence is contradic­ 
tory). Because of its inconsistent appearance in the 
NURP data base, it was excluded from the regression 
analysis. Percentage of drainage area under construc­ 
tion also was presented by Driver and Tasker as a 
potential variable, particularly for prediction of sus­ 
pended sediment load or concentration. In cities where 
the calibration data set (local data base) is relatively 
large (more than 30 observations), calibration of 3 or 
more regression coefficients can be justified and might 
provide more accurate results.

Weighted Combination of Regional Prediction and 
Local-Regression Prediction

The fourth procedure (MAP-W) differs funda­ 
mentally from the other suggested MAP's. Rather than 
resulting from regression analysis of observed values 
against regional-model predicted values (and possibly 
other variables), the prediction at an unmonitored site i 
is calculated from an explicit weighting algorithm that 
weights the predicted value from the unadjusted 
regional model with a predicted value based only on 
the local monitoring data (D.R. Helsel, U.S. Geologi­ 
cal Survey, oral commun., 1992):

(9)

where
Ji is a weighting factor (a fraction between 0 

and 1), which has a unique value for each 
unmonitored site; and 

PIOCJ is the predicted value at unmonitored site /
based on local data.

The value for P/oc at the unmonitored site / 
might be derived from a regression model from the 
local data base (a regression analysis of observed val­ 
ues against values for selected physical, land-use, and 
climatic characteristics), or might be set as the mean 
value of the observed values. The weighting factor,
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jit is a function of the variances of prediction at the 
unmonitored site i (Vpi) resulting from the estimating 
procedures for Ploc and Pu (G.D. Tasker, U.S. Geolog­ 
ical Survey, oral commun., 1992):

  _Ji ~ pi - loc
(V .v -. , +Vpi -loc pi-u

pi-u

(10)

(11)

(12)

where 
Vpi-ioc i s variance of prediction at unmonitored site /

for the local regression model; 
Vpi-u i s variance of prediction at unmonitored site /

for the unadjusted regional model; 
SEioc is standard error of estimate (in log units) for

the local regression model; 
SEU is standard error of estimate (in log units)

computed from the regional (NURP) cali­ 
bration data set for the unadjusted regional 
model;

jCj;is a (1 x p) row vector of the p-1 explanatory 
variables used in the local regression, eval­ 
uated (in log units) for unmonitored site /, 
augmented by a 1 as the first element; 

X is a (n x p) matrix of the p-1 explanatory vari­ 
ables used in the local regression, evalu­ 
ated (in log units) for all n sites in the local 
calibration data set, augmented by a 1 as 
the first column;

Zi; is a (1 x k) row vector of the k-1 explanatory 
variables used in the regional regression, 
evaluated (in log units) for unmonitored 
site i, augmented by a 1 as the first ele­ 
ment; and

Z is a (m x k) matrix of the k-1 explanatory vari­ 
ables used in the regional regression, evalu­ 
ated (in log units) for all m sites in the 
regional (NURP) calibration data set, aug­ 
mented by a 1 as the first column. 

SEU is taken from the published values (Driver and 
Tasker, 1990, tables 2, 3, and 6) for the regional 
model; these values are included for selected constitu­ 
ents and model types in table 1 of this report (in col­ 
umns titled Log). SEioc can be computed according to 
the general formula for SE:

(logQ. -log/*.)
(13)

/i-(*+!)

where
SE is standard error of estimate of a regression 

model for the calibration data set, in log 
units; 

Of is i th observed value for the response variable
in the calibration data set; 

Pi is ith fitted value for the response variable in
the calibration data set; 

n is number of observations in the calibration
data set; and 

k is number of explanatory variables in the
regression model.

The matrix operations are factored into the for­ 
mulas for Vpi to make y'/ responsive to the difference 
between the explanatory-variable values for the 
unmonitored site and the mean values for the calibra­ 
tion data sets associated with Pu and P/oc . A simpler, 
although statistically less valid, formula for Vpi can be 
used by dropping the term comprising the matrix oper­ 
ations from equations 11 and 12 giving

i-loc

Vpi . u =

(14)

(15)

In this case, the variance of prediction and the weight­ 
ing factor are not calculated uniquely for an unmoni­ 
tored site /, but rather are constants (Vp and j, rather 
than Vpi and 7',) for a particular city and constituent.

The MAP-W might be appropriate (as was the 
case for MAP-R-P+nV) when the pattern of corre­ 
spondence between O and Pl{ indicates that a MAP 
based on Pu alone (MAP-1F-P or MAP-R-P) is not 
appropriate (when the test statistic from either the 
signed rank test or the test for significance of rs is not 
significant). Selection of explanatory variables for the 
local regression analysis should be made using 
accepted statistical procedures, for example, a best- 
regression analysis. A list of candidate explanatory 
variables should be compiled based upon knowledge 
of processes controlling storm-runoff quality in the 
area of interest. A starting point for the compilation of 
this list might be the six or seven most significant vari­ 
ables from the regional regression analyses of Driver 
and Tasker. The absolute value of the standardized 
beta coefficient for an explanatory variable (Driver
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and Tasker, 1990, table 4) can be used as an indication 
of its significance in their analysis. Then, other explan­ 
atory variables believed to be controlling variables of 
urban runoff quality can be added (for example, ante­ 
cedent dry days, or percentage of drainage area under 
construction). The best regression model for a set of k 
explanatory variables can then be determined by 
regression analysis of the 2 possible subsets and com­ 
parison of an appropriate statistic from the regression 
(for example, the PRESS statistic or Mallows Cp; see 
Draper and Smith, 1981, for additional information on 
these methods). The analyst, however, might wish to 
restrict the choice to subsets with fewer than a certain 
number of variables depending upon the size of the 
calibration data set.

Selection of Appropriate Adjustment Procedures

The conditions for application of each MAP 
cited in the preceding discussion are organized into a 
scheme (fig. 2) to select the most appropriate MAP for 
a selected constituent model and local data base. This 
scheme is based solely on exploratory data analysis 
(EDA) of the local data base.

In the first operation in this scheme, the analyst 
determines if any adjustment procedure is necessary, 
or if the regional model can be used without adjust­ 
ment. Examination of data plots of Pu and 0, similar 
to figure 1, and evaluation of an appropriate error sta­ 
tistic, such as root mean square error, can guide the 
data analyst in determining whether the prediction 
error of the unadjusted regional model is within 
acceptable limits.

Use regional 
model as is

MAP-1 F-P

MAP-R-P

MAP-R-P+nV
or 

MAP-W

EXPLANATION

Simple estimator (for 
example, the mean) 
or collect additional 
data to calibrate on 

independent local model

PREDICTED VALUES OF STORM-RUNOFF 
LOAD OR MEAN CONCENTRATION FROM 
THE UNADJUSTED REGIONAL MODEL

OBSERVED VALUES OF STORM-RUNOFF 
LOAD OR MEAN CONCENTRATION

SPEARMAN'S RHO 

NUMBER OF OBSERVATIONS

MAP-1 F-P SINGLE-FACTOR REGRESSION AGAINST 
REGIONAL PREDICTION

MAP-R-P REGRESSION AGAINST REGIONAL PREDICTION

MAP-R-P+nV REGRESSION AGAINST REGIONAL PREDICTION 
AND ADDITIONAL LOCAL VARIABLES

MAP-W WEIGHTED COMBINATION OF REGIONAL 
PREDICTION AND LOCAL-REGRESSION 
PREDICTION

Figure 2. Flowchart guiding selection of model-adjustment procedure (MAP) based on exploratory data analysis of 
the calibration data set (from Hoos and Sisolak, 1993).
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Next the analyst performs the test for signifi­ 
cance of rs and the signed rank test. If the test statistic 
from each of these tests is significant at the selected 
level, then a MAP based on Pu alone (MAP-1F-P and 
MAP-R-P) is most appropriate. The choice between 
these two MAP's can be based on either the size of the 
calibration data set (as indicated in figure 2), or con­ 
sideration as to whether the observed bias can be cor­ 
rected by a constant factor (1^ for the MAP-R-P is not 
significantly different from unity for the calibration 
data set).

If either of the test statistics is not significant at 
the selected level, the analyst continues the EDA, test­ 
ing the correlation between the response variable and 
the candidate explanatory variables to be used in 
MAP-R-P+nV and MAP-W. If any of the correlations 
are significant, the analyst may select either MAP-R- 
P+nV or MAP-W. No basis is known for choosing 
between MAP-R-P+nV and MAP-W using EDA.

If none of the tested correlations are acceptably 
significant, then the analyst should reject the MAP 
approach for that constituent. Two possible alterna­ 
tives are (1) to use a simple estimator, such as mean 
value of the response variables from the local data 
base, to estimate constituent load and mean concentra­ 
tion; or (2) to collect sufficient local runoff quality 
data to allow for calibration of a completely indepen­ 
dent, local regression model.

Other logical schemes for selecting the appro­ 
priate MAP are possible. The analyst could calibrate 
and compute associated error statistics (for example, 
SE or PRESS) for all MAP's, then use relative values 
of error statistics to guide selection of the MAP. Using 
SE alone to guide MAP selection is shown later to be 
unreliable. The PRESS method (Draper and Smith, 
1981) cross validates a calibration using a 1 and (n-1) 
data split of the calibration data set repeated n times, 
and therefore the PRESS statistic may be a more reli­ 
able indicator of predictive accuracy. No scheme 
based on comparison of calibration error statistics 
alone, however, can provide the basis for deciding 
whether the MAP approach is valid for a particular 
data base and constituent, or whether some alternative 
to model adjustment should be sought. The scheme 
presented in figure 2 does provide such a basis.

Model-Adjustment Procedure Testing

The four proposed MAP's were tested for rela­ 
tive predictive accuracy for unmonitored sites or

storms, and for relative sensitivity to size of the cali­ 
bration data set. The performance of each MAP was 
compared among each type of model (Lsa, Csa, L3) to 
determine whether the models differed in their suit­ 
ability for a particular MAP. The results of these tests 
were used in turn to measure the success of the MAP 
selection scheme described in figure 2.

Test Procedures

Testing was accomplished using a split-sample 
analysis of three separate data bases: the local data 
bases for the NURP study areas in Denver, Colorado 
(region I); Bellevue, Washington (region II); and 
Knoxville, Tennessee (region III). Each region was 
represented so that each set of regional models could 
be tested. Values for storm-runoff load (response vari­ 
able) were read directly from archived data files for 
each city (Mustard and others, 1987, table 1). Values 
for storm-runoff mean concentration (response vari­ 
able) were calculated by dividing storm-runoff load, in 
pounds, by average storm-runoff depth over the basin, 
in inches, and by total contributing drainage area, in 
square miles, multiplied by a conversion factor. Pre­ 
dicted values from the unadjusted regional model were 
computed from values for the basin and storm charac­ 
teristics (explanatory variables) read from the archived 
data files.

For the split-sample analysis, the data base for 
each city was divided into two data sets: a calibration 
data set and verification data set. Division into two 
groups of about equal size was accomplished follow­ 
ing a systematic procedure to avoid bias. Individual 
storms were ordered first by site number and multiple 
storms at each site were ordered chronologically. 
Storms on this master list were then assigned alter­ 
nately to the calibration or verification set. This 
resulted in sample sizes for the calibration and verifi­ 
cation sets of 56 each for the Denver data base, 41 
each for the Bellevue data base, and 31 each for the 
Knoxville data base.

The MAP selection scheme prescribed in 
figure 2 was applied to the calibration data set from 
each data base to select the most appropriate MAP for 
each constituent model. Values for the test statistics 
and the selected MAP option are presented separately 
for the Bellevue, Denver, and Knoxville data bases 
(tables 2, 3, and 4, respectively). For the Bellevue data 
base, the MAP-1F-P or MAP-R-P were selected for 
most of the load models, whereas the MAP-R-P+nV 
or MAP-W were selected for two of the four
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Table 2. Exploratory data analysis of the calibration data sets from the data base for Bellevue, Washington

[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; rs, Spear­ 
man's rho; 0.005 is the selected level of significance for the test statistic; O, observed value of the response variable; Pu, predicted value of response variable 
from the unadjusted regional model; TRN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, antecedent dry days; COD, 
chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total-recoverable lead; SS, suspended solids; Lsa, stepwise-analysis regression model for storm- 
runoff load; Csa, stepwise-analysis regression model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; <, less 
than]

O and Pu 
positively 

Prediction error correlated

Constit­ 
uent and
model type

COD.Lsa
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa
PB.Csa
PB.L3
SS.Lsa
SS.Csa
SS.L3

RMSE

0.459
.440
.433
.345
.339
.449
.379
.360
.412
.495
.435
.711

Accept­ 
ably

small?

N
N
N
N
N
N
N
N
N
N
N
N

rs

0.893
.428
.887
.875
.239
.876
.806
.327
.792
.814
.205
.816

Signifi­ 
cant at
0.005?

Y
Y
Y
Y
N
Y
Y
N
Y
Y
N
Y

Consistent 
direction 
of bias

p-value

<0.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

.0002

.002
<.0001
<.0001
<.0001

Signifi­ 
cant at
0.005?

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

O signifi­ 
cantly 

correlated
i/orreiauon OT 

variable with O

TRN

0.760
-.469
.760
.753

-.322
.753
.632

-.300
.718
.800
.007
.800

DA

0.358
-.099
.358
.409
.066
.409
.417

-.063
.322
.210

-.200
.210

IA

-0.434
-.020
-.434
-.460
-.150
-.460
-.375
-.046
-.394
-.296
-.022
-.296

ADD

-0.130
.571

-.130
-.142
.513

-.142
-.215
.506

-.100
-.266
.222

-.266

wnn 
any 
vari­
able?

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y

Best
MAP

MAP-1F-P;MAP-R-P
MAP-1F-P;MAP-R-P
MAP-1F-P;MAP-R-P
MAP-1F-P; MAP-R-P
MAP-R-P+nV; MAP-W
MAP- 1F-P; MAP-R-P
MAP- 1F-P; MAP-R-P
MAP-R-P+nV; MAP-W
MAP-1F-P; MAP-R-P
MAP- 1F-P; MAP-R-P
None
MAP- 1F-P; MAP-R-P

Table 3. Exploratory data analysis of the calibration data sets from the data base for Denver, Colorado

[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; rs, Spear­ 
man's rho; 0.005 is the selected level of significance for the test statistic; O, observed value of the response variable; Pu, predicted value of response variable 
from the unadjusted regional model; TRN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, antecedent dry days; COD, 
chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total-recoverable lead; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, 
stepwise-analysis regression model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load]

Prediction error

Constit­ 
uent and 
model type

COD.Lsa 
COD.Csa
COD.L3
TKN.Lsa 
TKN.Csa
TKN.L3
PB.Lsa 
PB.Csa
PB.L3

RMSE

0.336 
.216
.344
.305
.225
.375
.458 
.282
.499

Accept­ 
ably 

small?

N 
Y
N
N 
Y
N
N 
Y
N

O and Pu 
positively 
correlated

rs

0.741 
.754
.69
.83 
.691
.768
.797 
.631
.787

Signifi­ 
cant at 
0.005?

Y 
Y
Y
Y 
Y
Y
Y 
Y
Y

Consistent 
direction 
of bias

p-value

0.784 
.28
.025
.245 
.245
.0008
.0778 
.0117
.0092

Signifi­ 
cant at 
0.005?

N 
N
N
N 
N
Y
N 
N
N

( 
Correlation of 
variable with O

TRN

0.446 
-.788
.446
.524 

-.685
.524
.144 

-.539
-.144

DA

0.511 
.228
.511
.604 

-.153
.604
.857 
.379
.857

IA

-0.078 
.020
-.078
-.117 
.145
-.117
-.449 
.354
-.449

O signifi­ 
cantly 

correlated 
with 
any 
vari- Best 
able? MAP

Y 
Y
Y
Y 
Y
Y
Y 
Y
Y

MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 1
MAP-R-P+nV; MAP-W
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 1
MAP- 1F-P; MAP-R-P
MAP-R-P+nV; MAP-W 
MAP-R-P+nV; MAP-W 1
MAP-R-P+nV; MAP-W

'The value for RMSE indicates, however, that the regional model could be used unadjusted.
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Table 4. Exploratory data analysis of the calibration data sets from the data base for Knoxville, Tennessee
[RMSE, root mean square error between observed and predicted (from unadjusted regional model) values of the response variable, in log units; rs. Spear­ 
man's rho; 0.005 is the selectedlevelof significance for the test statistic; O, observed value of the response variable; Pu , predicted value of response variable 
from the unadjusted regional model; TRN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; ADD, antecedent dry days; COD, 
chemical oxygen demand; TKN, total kjeldahl nitrogen; PB, total-recoverable lead; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, 
stepwise-analysis regression model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; <, less than]

Prediction error

Constit­ 
uent and 
model type

COD.Lsa
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa 
PB.Csa
PB.L3

RMSE

0.641
.497
.625
.924
.481
.894
.639 
.296
.714

Accept­ 
ably 

small?

N
N
N
N
N
N
N 
Y
N

O and Pu 
positively 
correlated

's

0.481
.050
.581
.320
.069
.425
.614 
.181
.614

Signifi­ 
cant at 
0.005?

Y
N
Y
N
N
Y
Y
N
Y

Consistent 
direction 
of bias

p-value

<0.0001
<.0001

.9999
<.0001

.0014
<.0001
<.0001 

.9999
<.oooo

Signifi­ 
cant at 
0.005?

Y
Y
N
Y
Y
Y
Y
N
Y

O signifi 
cantly 

correlate 
Correlation of with 
variable with O any 

vari-
TRN

0.356
-.498
.356
.232

-.449
.232
.320 

-.449
.320

DA

0.199
.012
.199
.245
.341
.245
.314 
.341
.314

IA

0.283
.003
.283
.280
-.041
.280
227 

-.041
.227

able?

N
N
N
N
N
N
N
N
N

d

Best 
MAP

MAP-1F-P;MAP-R-P

None
None
None
None
MAP-1F-P;MAP-R-P
MAP-1F-P;MAP-R-P

None
MAP-1F-P;MAP-R-P

] The value for RMSE indicates, however, that the regional model could be used unadjusted.

concentration models (table 2). For most constituents 
in the Denver data base, the MAP-R-P+nV or MAP-W 
were selected for both load and concentration models 
(table 3). For most constituents in the Knoxville data 
base, the EDA suggested that the MAP approach 
should be rejected in favor of alternatives (table 4).

Following initial exploratory data analysis, 
observations in the calibration data set were used to 
derive coefficients (6o,6i».-»6n+l> defined in eqs 1, 5, 
and 7; and SEioc, defined in eqs 1 1 and 1 3) for the 
MAP's. Two indications of predictive accuracy were 
computed and compared among the MAP's for the cal-

*j

ibration data set: the coefficient of determination (r~) 
and the standard error of the estimate (SE}. If the r2 
value is multiplied by 1 00, it represents the percentage 
of variation in the response variables that is explained 
by the explanatory variables. The SE is a measure of 
how well the estimated values (from the MAP) agree 
with the observed values for the calibration data set, 
and is computed, in log units, according to equation 
13. The SE, in percent, can be calculated from the SE, 
in log units, according to the formula

SE of the estimated value, if the residuals are normally 
distributed.

Computer programs used to perform the explor­ 
atory data analysis and MAP-calibration calculations 
for each calibration data set are given in Supplements 
A and B, respectively.

Log-transformed observations in the verification 
data set were used to measure how well the adjusted 
models estimated the response variables (log- 
transformed storm-runoff load and mean concentra­ 
tion) for an unmonitored site or storm. Predictive 
accuracy for the verification data set was measured 
using the root mean square error of the estimated 
response variable, calculated as

RMSE.. = (17)

SE(percent) = 100|
~I

-1J (16)

The SE can be interpreted as follows: approximately 
two out of three observed values will fall within one

where
RMSEv is root mean square error for the verification

data set, in log units; 
Oiv is i th observed value for the response variable

in the verification data set; 
Palv is i th predicted value for the response variable

in the verification data set; and 
n is number of observations in the verification 

data set.
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The relative predictive accuracy of the MAP's for the 
verification data set was used in turn to evaluate the 
success of the MAP selection scheme. The evaluation 
was made by comparing the selected MAP (tables 2,3, 
and 4) for a constituent model with the MAP with the 
smallest RMSEV

The Lsa, Csa, and L3 models for the constitu­ 
ents COD, TKN, PB, and SS were included in the test­ 
ing. The regional models for TKN were among the 
most accurate developed by Driver and Tasker (1990, 
p. 32), whereas the regional models for SS were the 
least accurate. Consequently, the results for these 
selected constituents might be expected to provide an 
estimate of the range of results for all 11 modeled con­ 
stituents.

Application of the MAP-W procedure requires 
development of a local regression model (using local 
basin and storm characteristics as explanatory vari­ 
ables and excluding the predicted value from the unad­ 
justed regional model). Although in a real application, 
a best-regression analysis examining all possible com­ 
binations of a nominated list of explanatory variables 
should be performed, this was deemed neither feasible 
nor necessary for testing purposes. For these tests, 
regression analysis was performed using only four 
variables where they were available: total storm rain­ 
fall (TRN), drainage area (DA), percentage impervi­ 
ous area (IA), and antecedent dry days (ADD). The 
first three variables in this list were most consistently 
found to be significant explanatory variables in the 
regression analysis by Driver and Tasker (1990, 
p. 17,21).

The selection of the additional explanatory vari­ 
able for the MAP-R-P+nV differed among cities. For 
the Bellevue analysis, the variable ADD was used. 
Because this variable was not present in the data base 
for Denver or Knoxville, the MAP-R-P+nV for these 
cities was tested using, as the additional explanatory 
variable, the most significant variable from the local 
regression analysis of the calibration data set.

Test Results

Comparison among MAP predictive accuracy 
for the verification data set was made to indicate the 
most accurate MAP for each constituent model for 
each of the test data bases. None of the MAP's 
emerged from the split-sample testing as clearly supe­ 
rior for all constituent models and data bases. These 
test results cannot, therefore, be used to indicate the 
most reliable MAP for any other local data base.

These results can be used to evaluate proposed proce­ 
dures for selecting a MAP for a particular constituent 
and data base, and in this way are of benefit when 
working with other local data bases. The following 
discussion of test results for each data base empha­ 
sizes this evaluation process.

Bellevue

Results of the split-sample analysis are pre­ 
sented in table 5 for the Bellevue data base. For each 
constituent model, the RMSEV (in log units) and the 
relative ranking for each MAP are reported, along 
with the RMSEV and relative ranking for other estima­ 
tors: the prediction from the unadjusted regional 
model, the prediction from local regression models, 
and the mean value of the response variable (in the 
calibration data set). When results for all models were 
aggregated, the MAP-R-P provided the best predictive 
accuracy for the verification data set, reducing the 
RMSEV from a mean value of 0.436 log units (or 132 
percent) for the unadjusted regional model, to 0.297 
log units (or 77 percent). The MAP-1F-P provided 
almost the same RMSEV reduction, to 0.300 log units 
(or 78 percent). The MAP-W proved least effective in 
reducing RMSEV.

When results were aggregated only by model 
type (Lsa, Csa, and L3), a different pattern of MAP 
performance emerged. The results for the Lsa and L3 
models were similar to the total-aggregate results 
(MAP-R-P and MAP-1F-P providing the best predic­ 
tive accuracy). For the Csa models, however, the pro­ 
cedures that included local explanatory variables 
(MAP-R-P+nV and local regression, both of which 
included antecedent dry days as an explanatory vari­ 
able) gave the best results.

The success of the proposed MAP selection pro­ 
cedure for this data base is evaluated by comparing, 
for each constituent model, the MAP that was selected 
on the basis of EDA of the calibration data set (table 2) 
with the MAP that produced the smallest RMSEV 
(table 5). In the 11 cases for which a MAP selection 
was made, 9 of the selections provided the most accu­ 
rate MAP. These results support the validity of the 
MAP selection procedure. The support is somewhat 
weakened, however, by the fact that the procedure 
does not provide a basis for choosing between MAP- 
R-P+nV and MAP-W.

As an alternative to the EDA approach to MAP 
selection, the choice could be guided by relative val­ 
ues, among the MAP's, of SE for the calibration data
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Table 5. Root mean square errors and associated rankings for model-adjustment procedures and other estimators for 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, from the 
data base for Bellevue, Washington

[Test results from split-sample analysis of calibration and verification data-set sizes of 41 each; COD, chemical oxygen demand; TKN, total kjeldahl nitro­ 
gen; PB, total-recoverable lead; SS, suspended solids; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, stepwise-analysis regression 
model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; MEAN, mean value of response variable from calibra­ 
tion data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and Tasker (1990, tables 1, 3, and 5); LOC, 
local regression model based on total storm rainfall, drainage area, impervious area, and antecedent dry days; model-adjustment procedures (MAP's) defined 
in explanation in text; MAP-R-P+nV used antecedent dry days as additional explanatory variable; MAP-W used local regression model defined above in 
LOC; RMSEV, root mean square error for verification data set, in log units]

Constit­
uent and 
model type

COD.Lsa
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa
PB.Csa
PB.L3
SS.Lsa
SS.Csa
SS.L3

Mean

Mean Lsa

Mean Csa

Mean L3

Unadjusted 
MEAN regional model LOC

RMSEV

0.465
.238
.465
.498
.220
.498
.582
.331
.554
.643
.373
.643

.459

.547

.291

.540

Rank

7.0
6.0
7.0
7.0
6.0
7.0
7.0
6.0
7.0
7.0
4.0
6.0

6.4

7.0

5.5

6.8

RMSEV Rank RMSEV

0.437 6.0 0.283
.397 7.0 .205
.409 6.0 .283
.341 6.0 .262
.289 7.0 .181
.442 6.0 .262
.391 6.0 .325
.381 7.0 .317
.439 6.0 .380
.522 6.0 .454
.463 7.0 .377
.721 7.0 .454

.436 6.4 .315

.423 6.0 .331

.383 7.0 .270

.503 6.3 .345

Rank

4.0
1.0
5.0
4.0
1.0
4.0
5.0
2.0
5.0
5.0
6.0
4.0

3.8

4.5

2.5

4.5

MAP-1 F-P MAP-R-P MAP-R-P+nV MAP-W

RMSEV Rank RMSEV Rank RMSEvRank RMSEV Rank

0.257
.225
.258
.253
.208
.251
.310
.319
.360
.401
.353
.402

.300

.305

.276

.318

1.0 0.260
4.0
1.0
2.0
5.0
2.0
2.0
4.0
3.0
1.0
2.0
1.0

2.3

1.5

3.8

1.8

.226

.260

.248

.207

.249

.299

.318

.338

.402

.356

.403

.297

.302

.277

.313

2.0 0.266
5.0
2.0
1.0
4.0
1.0
1.0
3.0
2.0
2.0
3.0
2.0

2.3

1.5

3.8

1.8

.213

.267

.255

.182

.255

.316

.278

.329

.413

.352

.414

.295

.313

.256

.316

3.0
2.0
3.0
3.0
2.0
3.0
4.0
1.0
1.0
3.0
1.0
3.0

2.4

3.3

1.5

2.5

0.283 5.0
.214 3.0
.279 4.0
.265 5.0
.195 3.0
.274 5.0
.313 3.0
.322 5.0
.378 4.0
.443 4.0
.376 5.0
.459 5.0

.317 4.3

.326 4.3

.277 4.0

.348 4.5

Rankings of standard error of estimate for calibration data sets 1

Mean

Mean Lsa

Mean Csa

Mean L3

MEAN
rank

6.3

6.8

5.8

6.5

Unadjusted
regional model

rank

6.6

6.3

7.0

6.5

LOC
rank

1.2

1.5

1.0

1.0

MAP-1 F-P
rank

4.4

4.0

4.8

4.5

MAP-R-P
rank

3.3

3.0

3.8

3.3

MAP-R-P+nV MAP-W
rank

2.8

3.0

3.0

2.3

rank

3.4

3.5

2.8

4.0

1 Value ranked for unadjusted regional model is actually root mean square error for calibration data set.
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set. As with the preceding approach, the success of 
this criterion is evaluated by comparing, for each con­ 
stituent model, the MAP that was selected on the basis 
of minimum SE for the calibration data set with the 
MAP that produced the smallest RMSEY The relative 
rankings for SE for the calibration data sets, aggre­ 
gated by model type, are presented in table 5 in order 
to make this comparison.

For the Bellevue data base, selection on the 
basis of this criterion would favor the local regression 
model, which was ranked first (smallest values of SE 
for calibration data set) for both load and concentra­ 
tion models. Application of the local regression model 
to the verification data set, however, yielded among 
the poorest results (largest value of RMSEJ of all the 
tested procedures for the load models, and yielded the 
second-ranked results for the concentration models. 
Similarly, the top-ranked procedures for the verifica­ 
tion data set for the load models, MAP-1 F-P and 
MAP-R-P, were among the poorest ranked for the cali­ 
bration data set. This mismatch suggests that, whereas 
it may be possible to calibrate a local regression model 
so that it fits the calibration data set more closely than 
any MAP, its predictive accuracy might be much 
smaller than the MAP's for an unmonitored site or 
storm. Clearly the MAP selection procedure based on 
EDA is a better guide to selection of an appropriate 
MAP than the relative magnitude of SE for the calibra­ 
tion data set.

Denver

Results of the split-sample analysis are pre­ 
sented in table 6 for the Denver data base. MAP-W 
provided the best predictive accuracy for almost all of 
the verification data sets, reducing the RMSEV from a 
mean value of 0.370 log units (103 percent) for the 
unadjusted regional model, to 0.312 log units (82 per­ 
cent). The MAP-1 F-P proved least effective in reduc­ 
ing RMSEr MAP performance did not differ 
significantly among model types (Lsa, Csa, and L3).

The MAP selection procedure based on EDA 
was successful for the Denver data base. The selected 
MAP (table 3) proved to be the most accurate (small­ 
est RMSE^ table 6) for seven of the nine models ana­ 
lyzed. The lack of consistent direction of bias between 
O and Pu prompted selection of the MAP-R-P+nV or 
MAP-W option for almost every model. Although the 
choice between MAP-R-P+nV and MAP-W cannot be 
made based on EDA, this did not detract substantially 
because the two MAP's performed almost equally.

Selection of a MAP based on the relative rank­ 
ing of SE for the calibration data set (table 6) would 
favor the MAP-W, so that selection guided by this cri­ 
teria would have been successful (resulted in choosing 
the MAP with the greatest predictive accuracy for the 
verification data set) for this data base.

Knoxville

Results of the split-sample analysis are pre­ 
sented in table 7 for the Knoxville data base. MAP-W 
provided the best predictive accuracy for the verifica­ 
tion data sets, reducing RMSEV from a mean value of 
0.674 log units (318 percent) for the unadjusted 
regional model, to a mean value of 0.475 log units 
(152 percent). The MAP's based on Pu alone per­ 
formed poorly; for many models, RMSEV was larger 
than for estimation with a constant (the mean value of 
the response variable from the calibration data set). In 
addition, MAP-R-P+nV, MAP-W, and the local 
regression model were not as successful (compared 
with the results from the Bellevue and Denver data 
bases) in reducing RMSEr compared with the mean 
estimator.

The MAP selection procedure based on EDA 
had mixed success for the Knoxville data base. The 
MAP approach was deemed inappropriate (table 4) for 
five of the nine models analyzed, and so comparison 
with RMSEV (table 7) was not possible. The pattern of 
RMSEV described in the preceding paragraph validates 
the rejection by the EDA of the MAP approach, how­ 
ever. Such a rejection does provide some useful infor­ 
mation: warning that (1) other explanatory variables 
should be sought and included in the analysis, or 
(2) the MAP approach should be abandoned in favor 
of a simple estimator or collection of additional moni­ 
toring data.

For the remaining four models, the selected 
MAP (MAP-1 F-P or MAP-R-P) proved to be the 
poorest performer. The lower reliability of the MAP- 
selection procedure for the Knoxville data base may 
be due to the large difference (several orders of magni­ 
tude) between values of O and Pu for the calibration 
data set, as evident from the values of root mean 
square error (table 4). Thus, despite the apparently sig­ 
nificant level of correlation and consistent bias 
between O and Pu , the MAP's based on Pu alone were 
not successful in reducing error compared with MAP's 
that included additional, although weakly correlated, 
explanatory variables.
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Table 6. Root mean square errors and associated rankings for model-adjustment procedures and other estimators for 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, from the 
data base for Denver, Colorado

[Test results from split-sample analysis of calibration and verification data-set sizes of 56 each; COD, chemical oxygen demand; TKN, total kjeldahl nitro­ 
gen; PB, total-recoverable lead; SS, suspended solids; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, stepwise-analysis regression 
model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; MEAN, mean value of response variable from calibra­ 
tion data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and Tasker (1990, tables 1, 3, and 5); LOG, 
local regression model based on total storm rainfall, drainage area, and impervious area; model-adjustment procedures (MAP's) defined in explanation in 
text; MAP-R-P+nV used drainage area as additional explanatory variable in load models, total storm rainfall in mean concentration models; MAP-W used 
local regression model defined above in LOG; RMSEy, root mean square error for verification data set, in log units]

Constit­ 
uent and

Unadjusted 
MEAN regional model LOG MAP-1 F-P MAP-R-P MAP-R-P+nV MAP-W

model type RMSEV Rank RMSEV Rank RMSEV Rank RMSEV Rank RMSEV Rank RMSEV Rank RMSEV Rank

COD.Lsa 0.543 7.0 0.358 5.0 0.306 2.0 0.365 6.0 0.357 3.0 0.358 4.0 0.296 1.0
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa
PB.Csa
PB.L3

Mean

Mean Lsa

Mean Csa

Mean L3

.343

.584

.682

.303

.682
1.035
.420

1.035

.625

.753

.355

.767

7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0

7.0

7.0

7.0

7.0

.233

.379

.377

.282

.402

.474

.335

.493

.370

.403

.283

.425

4.0
5.0
5.0
6.0
6.0
5.0
6.0
5.0

5.2

5.0

5.3

5.3.

.228

.303

.342

.275

.342

.379

.285

.379

.315

.342

.263

.341

3.0
1.0
2.0
4.0
1.0
2.0
2.0
1.0

2.0

2.0

3.0

1.0

.238

.381

.403

.281

.395

.484

.332

.500

.375

.417

.284

.425

6.0
6.0
6.0
5.0
5.0
6.0
5.0
6.0

5.7

6.0

5.3

5.7

.233

.372

.373

.266

.363

.453

.329

.417

.351

.394

.276

.384

5.0
4.0
4.0
1.0
4.0
4.0
4.0
4.0

3.7

3.7

3.3

4.0

.225

.367

.372

.268

.362

.448

.327

.398

.347

.393

.273

.376

2.0
3.0
3.0
2.0
3.0
3.0
3.0
3.0

2.9

3.3

2.3

3.0

.220

.313

.327

.272

.346

.361

.278

.392

.312

.328

.257

.350

1.0
2.0
1.0
3.0
2.0
1.0
1.0
2.0

1.6

1.0

1.7

2.0

Rankings of standard error of estimate for calibration data sets

Mean

Mean Lsa

Mean Csa

Mean L3

MEAN 
rank

7.0

7.0

7.0

7.0

Unadjusted 
regional model 

rank

5.6

5.0

6.0

5.7

LOG 
rank

1.9

3.0

1.7

1.0

MAP-1 F-P 
rank

5.3

5.7

5.0

5.3

MAP-R-P 
rank

3.2

2.7

3.7

3.3

MAP-R-P+nV 
rank

3.4

3.7

3.3

3.3

MAP-W 
rank

1.6

1.0

1.3

2.3

'Value ranked for unadjusted regional model is actually root mean square error for calibration data set.
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Table 7. Root mean square errors and associated rankings for model-adjustment procedures and other estimators for 
verification data sets, compared with rankings for standard error of estimate for corresponding calibration data sets, from the 
data base for Knoxville, Tennessee

[Test results from split-sample analysis of calibration and verification data-set sizes of 31 each; COD, chemical oxygen demand; TKN, total kjeldahl nitro­ 
gen; PB, total-recoverable lead; SS, suspended solids; Lsa, stepwise-analysis regression model for storm-runoff load; Csa, stepwise-analysis regression 
model for storm-runoff mean concentration; L3, 3-variable regression model for storm-runoff load; MEAN, mean value of response variable from calibra­ 
tion data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and Tasker (1990, tables 1, 3, and 5); LOG, 
local regression model based on total storm rainfall, drainage area, and impervious area; model-adjustment procedures (MAP's) defined in explanation in 
text; MAP-R-P+nV used impervious area as additional explanatory variable in load models, total storm rainfall in mean concentration models; MAP-W 
used local regression model defined above in LOG; RMSEy, root mean square error for verification data set, in log units]

Constit­
uent and 
model type

COD.Lsa
COD.Csa
COD.L3
TKN.Lsa
TKN.Csa
TKN.L3
PB.Lsa
PB.Csa
PB.L3

Mean

Mean Lsa

Mean Csa

Mean L3

MEAN

RMSEV Rank

0.507
.521
.507
.373
.540
.373
.574
.540
.574

.501

.485

.534

.485

1.0
4.0
1.0
5.0
7.0
6.0
6.0
7.0
6.0

4.8

4.0

6.0

4.3

Unadjusted 
regional model LOG

RMSEV Rank RMSEV

0.741 7.0 0.517
.545 7.0
.750 7.0
.868 7.0
.491 1.0
.824 7.0
.653 7.0
.491 1.0
.706 7.0

.674 6.3

.754 7.0

.509 3.0

.760 7.0

.500

.517

.325

.532

.325

.545

.532

.545

.482

.462

.521

.462

Rank

3.0
2.0
2.0
1.0
6.0
1.0
2.0
6.0
2.0

2.8

2.0

4.7

1.7

MAP-1 F-P

RMSEtf

0.553
.527
.564
.404
.495
.367
.561
.495
.561

.503

.506

.506

.497

MAP-R-P MAP-R-P+nV

Rank RMSEV Rank RMSEV

6.0 0.530 5.0 0.507
5.0
6.0
6.0
2.0
5.0
4.0
2.0
4.0

4.4

5.3

3.0

5.0

.529 6.0

.556 5.0

.369 4.0

.516 5.0

.363 4.0

.549 3.0

.516 5.0

.549 3.0

.497 4.4

.483 4.0

.520 5.3

.489 4.0

.516

.528

.337

.507

.341

.567

.507

.567

.486

.470

.510

.479

MAP-W

Rank RMSEV Rank

2.0 0.521 4.0
3.0 .473 1.0
3.0
2.0
4.0
3.0
5.0
3.0
5.0

3.3

3.0

3.3

3.7

528 4.0
360 3.0
505 3.0
340 2.0
519 1.0
512 4.0
518 1.0

475 2.6

.467 2.7

497 2.7

462 2.3

Rankings of standard error of estimate for calibration data sets 1

Mean

Mean Lsa

Mean Csa

Mean L3

MEAN
rank

5.3

5.3

4.7

6.0

Unadjusted
regional model

rank

7.0

7.0

7.0

7.0

LOG
rank

1.3

1.0

1.7

1.3

MAP-1 F-P
rank

4.9

4.7

6.0

4.0

MAP-R-P
rank

3.2

2.7

4.3

2.7

MAP-R-P+nV
rank

2.4

3.0

2.3

2.0

MAP-W
rank

3.8

4.3

2.0

5.0

1 Value ranked for unadjusted regional model is actually root mean square error for calibration data set.
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Sensitivity Analysis

To examine variance of MAP performance as a 
function of calibration data set size, split-sample anal­ 
ysis was repeated several times for the Bellevue data 
base, using different sizes for the calibration data set. 
Results from this sensitivity analysis are presented in 
table 8 for calibration data-set (CDS) sizes of 51, 41, 
31, and 21 and for the Lsa and Csa models. Test bias, 
which might result from selecting biased subsets of the 
CDS, was avoided by random selection of observa­ 
tions for the CDS from the entire data base. For each 
constituent and model form, the random selection and 
testing was repeated 50 times and the results averaged.

As expected, RMSEV increased for all MAP's as 
CDS size decreased. Because RMSEV increased by dif­ 
ferent amounts for different procedures, however, the 
relative ranking among the procedures changed as the 
CDS size decreased. For the load models, the increase 
in RMSEV was larger for the local regression model 
than for the other procedures. The greater number of 
explanatory variables and calibration coefficients for 
the local regression model and MAP-R-P+nV, which 
causes a larger variance of prediction for these proce­ 
dures, might cause the model to perform more poorly, 
compared to the other procedures, for the smaller CDS 
size. This variance also might explain why the MAP- 
1F-P and MAP-R-P reverse their relative ranking to 
first and second, respectively, as CDS size decreases. 
The single calibration coefficient in MAP-1F-P mini­ 
mizes the variance of prediction. Although the relative 
ranking of MAP-W improved with decreasing CDS 
size, the best-performing MAP's for load models, 
regardless of CDS size, were the MAP-1F-P and 
MAP-R-P.

For concentration models, the increase in 
RMSEV as CDS size decreased was also larger for the 
local regression than for the other procedures. The rel­ 
ative ranking among the other procedures remained 
the same (MAP-R-P+nV was the best-performing 
MAP at any CDS size), indicating relative insensitiv- 
ity to CDS size. Performance of the local regression 
models, however, did prove to be sensitive to CDS 
size.

Estimating the Accuracy of Model-Adjustment 
Procedures

The accuracy of a model-adjustment procedure, 
and the relative accuracy of each MAP, will be differ­ 
ent for each local data base (calibration data set).

Three estimates of accuracy can be computed and 
compared among the MAP's for a given local data 
base. These indices are the coefficient of determina­ 
tion (r2), the standard error of the estimate (SE), and 
the standard error of prediction (SEP). The r and SE 
(defined and discussed earlier) are computed from the 
calibration data, and the SEP is computed when a pre­ 
diction is prepared for an unmonitored site.

Although it may be assumed that the MAP with 
the smallest value of SE and largest value of ir will 
produce the greatest predictive accuracy for an 
unmonitored site, the results of the split-sample testing 
(tables 5, 6, and 7) illustrate that this interpretation 
should be made with caution. For most of the constitu­ 
ents tested, the MAP with the smallest value of SE 
(reported in the lower part of tables 5, 6, and 7) did not 
also provide the smallest value ofRMSEr Exploratory 
data analysis of the calibration data set and application 
of the MAP selection procedure illustrated in figure 2 
is probably a better guide to selection of an appropri­ 
ate MAP than the relative magnitude of SE.

The SEPj is a measure of the predictive accuracy 
of the MAP for a particular unmonitored site /. The 
SEPi is computed as a function of the SE of the MAP 
as well as the difference between explanatory-variable 
values for the unmonitored site and the mean values of 
the calibration data set. The equations for computing 
SEP i (in log units) for each MAP are presented in Sup­ 
plement C. The SEP^ in percent, can be calculated 
from SEPt , in log units, using the same conversion fac­ 
tors presented in equation 16 for SE.

Calculation of confidence intervals also can help 
evaluate the accuracy of the procedures. A 100(1-a) 
confidence interval for the true value of the response 
variable (storm-runoff load or mean concentration) for 
an unmonitored site / and for a selected MAP can be 
computed by

(18)

where
YI is true (but unknown) value of the response

variable at unmonitored site /; 
Pai is predicted value at unmonitored site /', from

the adjusted model; and 
T is calculated as follows:

iog r = t x SEP:
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Table 8. Effect of size of calibration data sets for model-adjustment procedures on root mean square errors for verification 
data sets taken from the Bellevue, Washington, data base
[Test results from split-sample analysis of varying calibration and verification data-set sizes; COD, chemical oxygen demand; TKN, total kjeldahl nitrogen; 
PB, total-recoverable lead; SS, suspended solids; Lsa, step-analysis regression model for storm-runoff load; Csa, step-analysis regression model for storm- 
runoff mean concentration; L3, 3-variable regression model for storm-runoff load; CDS, calibration data set; MEAN, mean value of response variable from 
calibration data set used as an estimator; Unadjusted regional model, the appropriate single-storm model from Driver and Tasker (1990, tables 1, 3, and 5); 
LOC, local regression model based on total storm rainfall, drainage area, impervious area, and antecedent dry days; model-adjustment procedures (MAP's) 
defined in explanation in text; MAP-R-P+nV used antecedent dry days as additional explanatory variable; MAP-W used local regression model defined 
above in LOC; RMSEy, root mean square error for verification data set, in log units]

Constit­ 
uent and 
model type

SS.Lsa
COD.Lsa
TKN.Lsa
PB.Lsa

Mean rank

SS.Lsa
COD.Lsa
TKN.Lsa
PB.Lsa

Mean rank

SS.Lsa
COD.Lsa
TKN.Lsa
PB.Lsa

Mean rank

SS.Lsa
COD.Lsa
TKN.Lsa
PB.Lsa

Mean rank

SS.Csa
COD.Csa
TKN.Csa
PB.Csa

Mean rank

SS.Csa
COD.Csa
TKN.Csa
PB.Csa

Mean rank

SS.Csa
COD.Csa
TKN.Csa
PB.Csa

Mean rank

SS.Csa
COD.Csa
TKN.Csa
PB.Csa

Mean rank

CDS 
size

21
21
21
21

21

31
31
31
31

31

41
41
41
41

41

51
51
51
51

51

21
21
21
21

21

31
31
31
31

31

41
41
41
41

41

51
51
51
51

51

MEAN

RMSEV

0.618
.444
.482
.550

.620

.435

.477

.551

.618

.444

.476

.545

.622

.431

.489

.549

.352

.254

.252

.328

.351

.253

.247

.320

.344

.261

.245

.322

.343

.250

.240

.331

Rank

7.0
6.0
7.0
7.0

6.8

7.0
6.0
7.0
7.0

6.8

7.0
6.0
7.0
7.0

6.8

7.0
6.0
7.0
7.0

6.8

4.0
6.0
6.0
6.0

5.5

6.0
6.0
6.0
6.0

6.0

6.0
6.0
6.0
6.0

6.0

6.0
6.0
6.0
6.0

6.0

Unadjusted 
regional model

RMSEV

0.507
.452
.341
.389

.511

.450

.341

.392

.522

.455

.346

.402

.519

.459

.355

.404

.448

.409

.298

.359

.443

.410

.298

.351

.448

.414

.295

.361

.443

.410

.294

.364

Rank

6.0
7.0
6.0
6.0

6.3

6.0
7.0
6.0
6.0

6.3

6.0
7.0
6.0
6.0

6.3

6.0
7.0
6.0
6.0

6.3

7.0
7.0
7.0
7.0

7.0

7.0
7.0
7.0
7.0

7.0

7.0
7.0
7.0
7.0

7.0

7.0
7.0
7.0
7.0

7.0

LOC

RMSEV

0.440
.280
.289
.361

.340

.268

.263

.340

.398

.255

.255

.328

.387

.246

.257

.315

.363

.210

.231

.308

.342

.202

.215

.296

.328

.198

.209

.282

.326

.191

.200

.293

Rank

5.0
4.0
5.0
5.0

4.8

1.0
4.0
5.0
5.0

3.8

4.0
4.0
4.0
5.0

4.3

4.0
4.0
4.0
4.0

4.0

6.0
1.0
3.0
3.0

3.3

3.0
1.0
2.0
3.0

2.3

2.0
1.0
3.0
2.0

2.0

2.0
1.0
1.0
2.0

1.5

MAP-1 F-P

RMSEV

0.375
.251
.251
.315

.363

.243

.247

.321

.376

.242

.246

.314

.366

.236

.252

.310

.340

.230

.235

.314

.338

.229

.230

.316

.330

.234

.228

.308

.331

.227

.225

.317

Rank

1.0
1.0
1.0
1.0

1.0

2.0
1.0
2.0
1.5

1.6

1.0
1.0
2.5
2.0

1.6

1.0
1.0
3.0
3.0

2.0

1.0
4.0
4.0
4.0

3.3

2.0
4.0
4.0
4.0

3.5

3.0
4.0
4.0
4.0

3.8

3.0
4.0
4.0
4.0

3.8

MAP-R-P

RMSEV

0.385
.259
.258
.316

.372

.252

.246

.321

.381

.246

.245

.312

.370

.240

.249

.306

.348

.236

.243

.324

.343

.233

.235

.324

.334

.239

.232

.312

.334

.230

.228

.320

Rank

2.0
2.0
2.0
2.0

2.0

3.0
2.0
1.0
1.5

1.9

2.0
2.0
1.0
1.0

1.5

2.0
2.0
1.0
1.0

1.5

3.0
5.0
5.0
5.0

4.5

5.0
5.0
5.0
5.0

5.0

4.0
5.0
5.0
5.0

4.8

4.0
5.0
5.0
5.0

4.8

MAP-R-P+nV

RMSEV

0.408
.267
.266
.322

.384

.258

.249

.327

.389

.248

.246

.317

.377

.243

.250

.307

.347

.216

.220

.290

.336

.211

.213

.288

.326

.212

.209

.277

.323

.204

.201

.285

Rank

3.0
3.0
3.0
3.0

3.0

4.0
3.0
3.0
4.0

3.5

3.0
3.0
2.5
3.0

2.9

3.0
3.0
2.0
2.0

2.5

2.0
2.0
1.0
1.0

1.5

1.0
2.0
1.0
1.0

1.3

1.0
2.0
2.0
1.0

1.5

1.0
2.0
2.0
1.0

1.5

MAP-W

RMSEV

0.418
.287
.275
.337

.406

.278

.261

.326

.407

.275

.258

.327

.399

.267

.262

.318

.358

.219

.226

.297

.343

.217

.216

.295

.342

.216

.212

.287

.340

.208

.208

.294

Rank

4.0
5.0
4.0
4.0

4.3

5.0
5.0
4.0
3.0

4.3

5.0
5.0
5.0
4.0

4.8

5.0
5.0
5.0
5.0

5.0

5.0
3.0
2.0
2.0

3.0

4.0
3.0
3.0
2.0

3.0

5.0
3.0
1.0
3.0

3.0

5.0
3.0
3.0
3.0

3.5
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where
tft n _p) is critical value of the t-distribution for n-p

degrees of freedom, 
n is number of observations in the calibration

data set,
p is number of explanatory variables plus 1, and 

SEPi is expressed in log units.

Example Application

The following example illustrates the estimation 
of storm-runoff load for an unmonitored site and a sin­ 
gle storm, using the 4 MAP's with a local data base 
consisting of 18 storms from 5 sites. A city engineer 
from city X would like to estimate a storm-runoff load 
for COD for any size storm and at any unmonitored 
site i in that city. Using the COD load model (Lsa) for 
region II (Driver and Tasker, 1990, table 1) and the 
determined values for the explanatory variables for 
that model (TRN; DA; industrial land use, LUI; com­ 
mercial land use, LUC; nonurban land use, LUN; and 
mean annual rainfall, MAR), the engineer calculates a 
value for storm-runoff load (Pu) to correspond with 
each monitored storm in the local data base. The can­ 
didate basin- and storm-characteristic variables to be

used as additional explanatory variables (for calibrat­ 
ing MAP-R-P+nV) and in local regression models (for 
calibrating MAP-W) are also evaluated. The hypothet­ 
ical calibration data set is now assembled for city X 
(table 9). The engineer then follows the EDA and 
MAP selection scheme prescribed in figure 2. The root 
mean square error is 0.453 in log units, or 130 percent. 
The city engineer decides this is unacceptably large, 
and proceeds to evaluate the MAP approach. Pu is sig­ 
nificantly and positively correlated with O (rs is 
0.887) and biased in a consistent direction relative to 
O (p-value for the signed-rank test is less than 0.0001), 
suggesting that either MAP-1F-P or MAP-R-P would 
be appropriate for the COD load model for city X. 
Because of the small data set size (/?=18), the engineer 
selects MAP-1F-P. Coefficients for MAP-1F-P are 
then determined by performing a set of regression cal­ 
culations on the calibration data set such as those 
listed in Supplement B; the results for city X are listed 
in table 9, along with the results for the other MAP's. 

The city engineer is now interested in estimating 
storm-runoff load for COD for a particular unmoni­ 
tored site i (DA = 0.15 mi2 , IA = 40 percent, LUI = 5 
percent, LUC = 40 percent, LUN = 20 percent, LUR = 
35 percent) for a particular storm of 0.2 in. rainfall 
(TRN = 0.2 in.) that followed 5 days of no rainfall

Table 9. Sample of calibration data set and values for standard errors of estimate, bias-correction factors, and coefficients 
for the model-adjustment procedures for city X

[Pu , predicted load from unadjusted regional model; O, observed load; TRN, total storm rainfall; DA, total contributing drainage area; IA, impervious area; 
ADD, antecedent dry days; SEy standard error of estimate; BCF, bias-correction factor; B0, B], B 2, 63, B4, j, coefficients for the MAP's; MAP-1 F-P, single-fac­ 
tor regression against regional prediction; MAP-R-P, regression against regional prediction; MAP-R-P+nV, regression against regional prediction and local 
data; MAP-W, weighted combination of regional prediction and local-regression prediction; LOG, local regression model;  , additional data not shown]

Pu,'m 
pounds

578
87

285
122
142

O, in 
pounds

360
29

120
26
41

TRN, in 
inches

1.45
.15
.62
.56
.56

DA, in 
square miles

0.15
.15
.15
.04
.04

IA, in 
percent

36.1
36.1
36.1
56.5
56.5

ADD, in 
days

6
5
5
4
2

Model-
adjustment
procedure

MAP- 1 F-P
MAP-R-P
MAP-R-P+nV
MAP-W
LOG

SE,
log

0.235
.233
.229
.237
.224

BCF

1.25
1.14
1.24
1.43
1.12

BO

-0.328
-.397
-.684

; 4.44

B! B2 B3 B4 7

1.02
1.14 0.065

0.262
.914 .265 -1.26 0.029
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(ADD = 5 days). The mean annual rainfall for city X is 
25 in. (MAR = 25 in.). The engineer first calculates the 
value for unmonitored site / predicted from the unad­ 
justed regional model (/* /):

(0.696)
Pu .(COD) = 36.6 x (0.2) ' x (0.15)

x(5 + l) (0 - 072) x(40 + l) ( °- 261)

(-0.056)

Pui (COD) = 136 pounds.

(0.866)

Employing MAP-1F-P, Pui is adjusted to Pai using 
equation 3, and using the values listed for 60 and BCF 

in table 9:

p = io (-° 328) x 136 x 1.25 = 80 pounds.

The SEP (in log units) for unmonitored site and 
storm / for MAP-1F-P is computed using equation A 
in Supplement C, and using the value for SE^p.p listed 

in table 9, as:

SEP = 0.235 2 1 + TO I = 0.242 .

The value for SEPt expressed in percentage units is 60.
The 95-percent confidence interval for the pre­ 

diction is calculated as follows. The critical value for 

the t distribution for (18-2=16) degrees of freedom 
and cc/2=0.025 is determined (from a standard statisti­ 
cal table) to be 2.12. Then

(9 l?xO ~>4T\T = 10 UI - XU~42) = 3.26.

The values for the lower and upper bounds of the 

95-percent confidence interval (L95 and 6^95, respec­ 

tively) are therefore

L95 = x 80 = 25 pounds,

U95 = 3.26 x 80 = 260 pounds.

A MINITAB program for calculating Pai for 

each MAP is given in Supplement D.

Prediction of Annual or Seasonal 
Urban-Runoff Quality

A prediction of annual or seasonal urban-runoff 
load at an unmonitored site / can be obtained by apply­ 
ing the procedure described in the preceding example 
to a series of storms and producing a synthetic record 
of storm loads. Values of storm characteristics that are 
used as explanatory variables (for example, TRN; 
ADD; duration of each storm, DRN; maximum inten­ 
sity during a 15-minute period, MI 15) may be deter­ 
mined for the series of storms from the long-term 
rainfall record for a station near the unmonitored site. 
The synthesized record of storm loads may be reduced 
to an estimate of mean annual load by summing loads 
from each storm, then dividing by the number of years 
in the period of the synthetic record. Reduction to an 
estimate of mean seasonal load may be accomplished 
by summing loads only from the season of interest 
before dividing by the number of years of record.

SUMMARY

Water-quality management and load allocations 
from point and nonpoint sources in urban areas require 
city engineers, planners, and designers to estimate 
loads and mean concentrations of constituents in storm 
runoff. Although many deterministic and statistical 
models of urban-runoff quality are available, these 
models were calibrated using either national, regional, 
or local data bases for only a few selected cities. When 
data on urban-runoff quality from a local monitoring 
network can be assembled, the prediction from the 
model may be adjusted with local data. This report 
presents four statistical procedures, MAP'S, by which 
the predictions of urban-runoff quality from existing 
regression models can be combined or weighted with 
information from local data.

Each MAP is a form of regression analysis, in 
which the local data base is used as a calibration data 
set. Regression coefficients are determined from the 
local data, and the resulting adjusted regression mod­ 
els can then be used to predict storm-runoff quality at 
unmonitored sites. The response variable in the regres­ 
sion analyses is the observed load or mean concentra­ 
tion of a constituent in storm runoff for a single storm. 
The set of explanatory variables used in the regression 
analyses is different for each MAP, but always 
includes the predicted value of load or mean
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concentration from previously developed regional 
single-storm models.

The MAP's were tested using split-sample anal­ 
ysis, with data from three cities included in the 
Nationwide Urban Runoff Program: Denver, Colo­ 
rado; Bellevue, Washington; and Knoxville, Tennes­ 
see. The MAP that provided the greatest predictive 
accuracy for the verification data set differed among 
the three test data bases and among model types 
(MAP-W for Denver and Knoxville, MAP-1F-P and 
MAP-R-P for Bellevue load models, and MAP-R- 
P+nV for Bellevue concentration models) and, in 
many cases, was not clearly indicated by the values of 
SE for the calibration data set. This does not mean, 
however, that it is impossible, for the analyst when 
working without a verification data set, to anticipate 
which MAP will provide the greatest predictive accu­ 
racy for an unmonitored site. A scheme to guide MAP 
selection based on exploratory data analysis of the cal­ 
ibration data set is presented and tested. When O and 
Pu in the calibration data set are not strongly corre­ 
lated (as for Bellevue concentration models and for 
Knoxville models), or when the direction of bias 
between O and Pu is not consistent (as for Denver 
models), the MAP's based on Pu alone (MAP-1 F-P 
and MAP-R-P) should be rejected in favor of either 
MAP-R-P+nV or MAP-W. If, however, correlation 
between response variable and any of the explanatory 
variables used in MAP-R-P+nV or MAP-W is not 
strong (as for Knoxville), then these MAP's cannot be 
expected to provide better predictive accuracy than a 
simple estimator such as mean value of the response 
variable in the calibration data set. When O and Pl( in 
the calibration data set are strongly correlated and 
related according to a consistent direction of bias (as 
for Bellevue load models), then MAP-1 F-P and MAP- 
R-P are the most reliable procedures.

The MAP's were tested for sensitivity to the size 
of a calibration data set. As expected, predictive accu­ 
racy of all MAP's for the verification data set 
decreased as the calibration data-set size decreased, 
but their performance was not as sensitive as for the 
local regression models.
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SUPPLEMENT A. PROGRAM (MINITAB) OF EXPLORATORY DATA ANALYSIS 
PROCEDURES APPLIED TO CALIBRATION DATA SET TO GUIDE SELECTION OF 
MODEL-ADJUSTMENT PROCEDURES

# 'EDA.MTB'MACRO
# ('Exploratory Data Analysis')
#
# This macro performs several tests (exploratory data analysis procedures) on the calibration data set
# (a local data base) to determine which MAP will provide the highest prediction accuracy for an
# unmonitored site or storm in that city.
#
# Input data for this macro are:
#
# Cl - value for prediction from the unadjusted regional model for a particular site and storm
# (Pu), in real (not log-transformed) units
# C2 - observed value for that site and storm (O), in real (not log-transformed) units
# C3 - order number for site/storm (for bookkeeping purposes)
#
# The next five variables are those to be tested (using a best-regression analysis) for inclusion as
# explanatory variables in a local 5-variable regression model. The local regression model is then
# used as part of the MAP-W procedure. The variables are also tested for inclusion in the
# MAP-R-P+nV procedure.
#
# C4 - total rainfall (in.)
# C5 - drainage area (acres)
# C6 - any explanatory variable, in real units
# Cl - any explanatory variable, in real units
# C8 - any explanatory variable, in real units
#
# Log-transform all variables
#
LETC11=LOGTEN(C1) 
LETC12 = LOGTEN(C2) 
LET C4 = LOGTEN(C4) 
LET C5 = LOGTEN(C5) 
LET C6 = LOGTEN(C6) 
LET C7 = LOGTEN(C7) 
LET C8 = LOGTEN(CS)
# 
PLOTC11C12
#
# Calculate root mean square error (log units, Kl), from applying the unadjusted regional model to
# the calibration data set. If RMSE is acceptably small, the analyst may wish to use the regional
# model without any adjustment. (Respond 'Yes' for 'Prediction Error of Pu Small?' in flowchart.)
#
LETC21=(C12-C11)**2 
LET Kl = SUM(C21)/N(C21) 
LET Kl = SQRT(Kl) 
PRINT Kl
#
# Check to see if regional model captures relative variability among the observations: calculate and
# test Spearman's rho, rS. Compare the result (the value for the correlation printed below) against
# T* listed for selected alpha level (see, e.g., figure 11.9 of Iman and Conover): if Spearman's rho is
# greater than the listed T* for a given n, then respond 'Yes' for 'O and Pu Significantly and
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# Positively Correlated?' in flowchart.
#
RANKC11 C9 
RANK C12 CIO 
CORRELATION C9 CIO
#
# Now test whether predictions (Pu) are consistently biased relative to observed values (O). If so,
# this would indicate the appropriateness of using the predicted value as the single explanatory
# variable in the adjusted model. Use the signed rank test (paired data) to test for bias. If p-values
# are smaller than a selected alpha, then respond 'Yes' for 'Consistent Direction of Bias?' in
# flowchart.
#
LETC15 = C12-C11
STESTOC15
#
# Check correlation between response variable (O) and each of the local explanatory variables. If
# one or more of the candidate explanatory variables are significantly correlated with the response
# variables, respond 'Yes' for 'O and Other Explanatory Variables Significantly Correlated?' in
# flowchart.
#
CORRELATE C12 C4
CORRELATE Cl2 C5
CORRELATE Cl2 C6
CORRELATEC12C7
CORRELATE Cl2 C8
#
# First best regression test. Check for best regression model from list of combinations of explanatory
# variables. Select from among all models with Cp < p or high adjusted r2 values. Make final
# selection in favor of the simplest model with physically logical parameter values. This model
# would then be used in MAP-W. If the local regression is to be used alone (independent of
# MAP-W) then it should include total rainfall and drainage area, as a minimum.

#
BREGC12C4C5C6C7C8; 
INCLUDE C4-C5; 
BEST 5.
#
# Second best regression test. The results of the following best regression should be used in
# determining which variables should be used in the MAP-R-P+nV method. Variables that are
# dropped from the equation should not be used.
#
BREGC126C11 C4 C5 C6 C7 C8;
INCLUDE Cll;
BEST 5.
END

26 Procedures for Adjusting Regional Regression Models of Urban-Runoff Quality Using Local Data



SUPPLEMENT B. PROGRAM (MINITAB) OF STATISTICAL PROCEDURES APPLIED TO 
CALIBRATION DATA SET TO DERIVE COEFFICIENTS FOR MODEL-ADJUSTMENT 
PROCEDURES

# 'CALIBRATE.MTB' MACRO
#
# This macro uses the local data base (calibration data set) to derive coefficients for each
# model-adjustment procedure (MAP). Although the user may have selected one MAP as a result of
# exploratory data analysis of the calibration data set, this macro includes all procedures.
#
# IMPORTANT!!!!!!
# In this macro:
# for MAP-R-P+nV, n=5
# for MAP-W, the local regression is a 5-variable model
# The user must revise the number of variables used if so indicated by the EDA.MTB results.
#
# Input data for this macro are:
#
# Cl - value for prediction from the unadjusted regional model for a particular site and storm (Pu),
# in real (not log-transformed) units
# C2 - observed value for that site and storm (O), in real (not log-transformed) units
# C3 - order number for site/storm (for bookkeeping purposes)
#
# The local explanatory variables, chosen from using the best regression EDA.MTB results, are used
# in the MAP-R-P+nV and MAP-W procedures. This macro is written to use five variables, as listed
# below.
#
# C4 - total rainfall (in.)
# C5 - drainage area (acres)
# C6 - any explanatory variable, in real units
# C7 - any explanatory variable, in real units
# C8 - any explanatory variable, in real units
#
# WARNING!!! Do not attempt to use the data matrix that may be stored in the MINITAB
# worksheet as a result of a preceding execution, during the current MINITAB session, of
# EDA.MTB. The values input for C1-C8 must be in real units.
#
# K51 - value for SE, in log units, for the regional regressions. Taken from WSP 2363, table 2 (for 

Lsa models), table 6 (for Csa models) and table 3 (for L3 models)
#
# Log-transform all variables
#
LETCH =LOGTEN(C1) 
LET C12 = LOGTEN(C2) 
LET C4 = LOGTEN(C4) 
LET C5 = LOGTEN(C5) 
LET C6 = LOGTEN(C6) 
LET C7 = LOGTEN(C7) 
LET C8 = LOGTEN(C8)
#
NAME C52 'LOG7 , C53 'MAP-1F-P', C54 'MAP-R-P'
NAME C55 'MAP-R-P+', C56 'MAP-W'
#
# Procedure 1. MAP-1F-P
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# The no-exponent fitting of observed values against predicted values (recommended by Tasker and
# Cohn, September 90). Calculate Bo (K2), SE (K3), and BCF (K4) and store results in C53.
#
LET K2 = MEAN(C12) - MEAN(Cll)
LETC53(1) = K2
LETC16 = C11 + K2
LETC17 = (C16-C12)
LET K3 = SUM(C17 ** 2)/(N(C17)-2)
LET K3 = SQRT(K3)
LETK4 = SUM(10**(C17))/N(C17)
LETC53(10) = K3
LETC53(11) = K4
#
# Procedure 2. MAP-R-P
# Straight regression of observed values against predicted values (recommended by Will Thomas,
# October 91). Store results in C54 for coefficients, SE (K12), and BCF (K13).
#
REGRESS C12 1 Cll;
COEFFICIENTS C54;
RESIDC15;
MSEK12.
LETK12 = SQRT(K12)
LET K13 = SUM(10**(C15))/N(C15)
LETC54(10) = K12
LETC54(11) = K13
#
# Procedures. MAP-R-P+nV
# Straight regression of observed values against predicted values and additional independent
# variables. Store results in C55 for coefficients, SE (K16), and BCF (K17).
#
REGRESS C12 6 Cll C4 C5 C6 C7 C8;
COEFFICIENTS C55;
RESIDC28;
MSEK16.
LETK16 = SQRT(K16)
LET K17 = SUM(10**(C28))/N(C28)
LETC55(10) = K16
LETC55(11) = K17
#
# Procedure 4. MAP-W
# Weighting of prediction from unadjusted regional model with prediction from a local regression.
#
# First, fit coefficients for the local (5-variable) regression model and store results in C52 for
# coefficients, SE (K6), and BCF (K7).
#
REGRESS C12 5 C4 C5 C6 C7 C8 C99 C30;
COEFFICIENTS C52;
RESID C20;
MSB K6.
LET K6 = SQRT(K6)
LET K7 = SUM(10**(C20))/N(C20)
LETC52(10) = K6
LETC52(11) = K7
#
# Next, compute and store results in C56 for the weighting factor 'j', SE (Kl 8), and BCF (K19).
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#
LETC56(1) = C52(10)**2/(C52(10)**2+K51**2)
LETC23 = C56(1)*C11+(1-C56(1))*C30
LETC24 = (C23-C12)
LET K18 = SUM(C24**2)/(N(C24)-2)
LETK18 = SQRT(K18)
LET K19 = SUM(10**(C24))/N(C24)
LETC56(10) = K18
LETC56(11) = K19
#
# Printout results
#
PRINT C52-C56
WRITE 'COEFF.DAT C52-C56
END
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SUPPLEMENT C. FORMULAS FOR STANDARD ERROR OF PREDICTION FOR 
MODEL-ADJUSTMENT PROCEDURES

MAP-1F-P

SEPt = jSElF _ P l + -\, (A)

where
SEPi is standard error of prediction (in log units) for unmonitored site /; 

SE\p_p is standard error of estimate (in log units) for the calibration of equation 1; and 
n is number of observations in the calibration data set.

MAP-R-P

SEPi = SEl+MI/'I/r.- , (B)

where
SER.P is standard error of estimate (in log units) for the calibration of equation 5;

Uj is a ( 1 x 2) row vector containing 1 as the first element, and the value for the single explanatory variable, Pu,
evaluated (in log units) for unmonitored site /; and

U is a (n x 2) matrix containing 1 as the first column, and the values for the single explanatory variable, Pu, evaluated 
(in log units) for all n sites in the R-P calibration set, in the second column.

MAP-R-P+nV

i -   j.     . ^
(C)

where
SER.P+nV is standard error of estimate (in log units) for the calibration of equation 7;

>'/ is a (1 x)) row vector of the j-\ explanatory variables (the variable Pu and they-2 additional explanatory variables) 
used in the R-P+nV regression, evaluated (in log units) for 
unmonitored site /, augmented by a 1 as the first element; and

Y is a (n \j) matrix of the j-l explanatory variables used in the local regression, evaluated in log units) for all n sites 
in the R-P+nV calibration data set, augmented by a 1 as the first column.

MAP-W

V"" /ocX ^'""   (D)

where
Vi-loc ar|d Vpi-u are as defined in equations 1 1 and 12.
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SUPPLEMENT D. PROGRAM (MINITAB) APPLIED TO DATA FROM AN UNMONITORED 
SITE TO CALCULATE THE PREDICTION USING MODEL-ADJUSTMENT PROCEDURES

# 'PREDICT.MTB' MACRO
#
# This macro computes a predicted value for an unmonitored site/storm(s) using each MAP. To do
# this, it uses the output file generated from CALIBRATE.MTB, which contains coefficients
# (determined using the local database) for each MAP. This macro, like CALIBRATE.MTB, is
# written for the inclusion of all five additional variables in MAP-R-P+nV (n=5) and use
# of all five variables in the local regression used in MAP-W. THE USER MUST CHANGE THE
# FORMULAS IF EDA.MTB AND CALIBRATE.MTB SO INDICATE!!!
#
# Input data for this macro are:
#
# The output file from CALIBRATE.MTB, which is read into C52-C56 automatically if user does not
# exit MINITAB.
#
# Cl - predicted value for unmonitored site/store from Driver-Tasker equations and reported
# in real (not log-transformed) units
# C3 - order number for site/storm (for bookkeeping purposes)
# C4 - total rainfall (in.)
# C5 - drainage area (acres)
# C6 - any explanatory variable, in real units
# Cl - any explanatory variable, in real units
# C8 - any explanatory variable, in real units
#
NAME C30 'Pa-LOC', C36 'Pa-lF-P', C39 'Pa-R-P', C42 'Pa-R-P+'
NAME C45 'Pa-W
#
# Compute a predicted value using the MAP-1F-P procedure (the B 1-forced-to-unity fit of observed
# against predicted).
#
LETC36= 10**(C53(1))*C1*C53(11)
#
# Compute a predicted value using the MAP-R-P procedure (the 'regular' regression of observed
# against predicted).
#
LETC39= 10**(C54(1))*C1**(C54(2))*C54(11)
#
# Compute a predicted value using the MAP-R-P+nV procedure (regression of observed against
# predicted value and five explanatory variables).
#
LET C42 = 10**(C55(1))*C1 **(C55(2))*C4**(C55(3))*C5**(C55(4))*C6**(C55(5))&
#C7**(C55(6))*C8**(C55(7))*C55(11)
#
# Compute a predicted value using the MAP-W procedure. First, compute a predicted value using
# coefficients (derived from the calibration dataset) for the 5-variable regression model based on local
# data alone.
#
LET C30 = 10**(C52(1))*C4**(C52(2))*C5**(C52(3))
LET C30 = C30*C6**(C52(4))*C7**(C52(5))*C8**(C52(6))*C52( 11)
#
# Now apply the MAP-W prediction equation:
# 
LETC45=C1**(C56(1))*C30**(1-C56(1))*C56(11)
#
# Print results
#
PRINT C30,C36,C39,C42,C45
END
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SELECTED SERIES OF U.S. GEOLOGICAL SURVEY PUBLICATIONS
Periodical

Preliminary Determination of Epicenters (issued monthly).

Technical Books and Reports
Professional Papers are mainly comprehensive scientific 

reports of wide and lasting interest and importance to professional 
scientists and engineers. Included are reports on the results of 
resource studies and of topographic, hydrologic, and geologic 
investigations. They also include collections of related papers 
addressing different aspects of a single scientific topic.

Bulletins contain significant data and interpretations that are 
of lasting scientific interest but are generally more limited in scope 
or geographic coverage than Professional Papers. They include the 
results of resource studies and of geologic and topographic investi­ 
gations, as well as collections of short papers related to a specific 
topic.

Water-Supply Papers are comprehensive reports that 
present significant interpretive results of hydrologic investigations 
of wide interest to professional geologists, hydrologists, and engi­ 
neers. The series covers investigations in all phases of hydrology, 
including hydrogeology, availability of water, quality of water, and 
use of water.

Circulars present administrative information or important 
scientific information of wide popular interest in a format designed 
for distribution at no cost to the public. Information is usually of 
short-term interest.

Water-Resources Investigations Reports are papers of an 
interpretive nature made available to the public outside the formal 
USGS publications series. Copies are reproduced on request unlike 
formal USGS publications, and they are also available for public 
inspection at depositories indicated in USGS catalogs.

Open-File Reports include unpublished manuscript reports, 
maps, and other material that are made available for public consul­ 
tation at depositories. They are a nonpermanent form of publica­ 
tion that may be cited in other publications as sources of 
information.

Maps
Geologic Quadrangle Maps are multicolor geologic maps 

on topographic bases in 7.5- or 15-minute quadrangle formats 
(scales mainly 1:24,000 or 1:62,500) showing bedrock, surficial, 
or engineering geology. Maps generally include brief texts; some 
maps include structure and columnar sections only.

Geophysical Investigations Maps are on topographic or 
planimetric bases at various scales; they show results of surveys 
using geophysical techniques, such as gravity, magnetic, seismic, 
or radioactivity, which reflect subsurface structures that are of eco­ 
nomic or geologic significance. Many maps include correlations 
with the geology.

Miscellaneous Investigations Series Maps are on planimet­ 
ric or topographic bases of regular and irregular areas at various 
scales; they present a wide variety of format and subject matter. 
The series also includes 7.5-minute quadrangle photogeologic 
maps on planimetric bases that show geology as interpreted from 
aerial photographs. Series also includes maps of Mars and the 
Moon.

Coal Investigations Maps are geologic maps on topographic 
or planimetric bases at various scales showing bedrock or surficial 
geology, stratigraphy, and structural relations in certain coal- 
resource areas.

Oil and Gas Investigations Charts show stratigraphic infor­ 
mation for certain oil and gas fields and other areas having petro­ 
leum potential.

Miscellaneous Field Studies Maps are multicolor or black- 
and-white maps on topographic or planimetric bases for quadran­ 
gle or irregular areas at various scales. Pre-1971 maps show bed­ 
rock geology in relation to specific mining or mineral-deposit 
problems; post-1971 maps are primarily black-and-white maps on 
various subjects such as environmental studies or wilderness min­ 
eral investigations.

Hydrologic Investigations Atlases are multicolored or 
black-and-white maps on topographic or planimetric bases pre­ 
senting a wide range of geohydrologic data of both regular and 
irregular areas; principal scale is 1:24,000, and regional studies are 
at 1:250,000 scale or smaller.

Catalogs
Permanent catalogs, as well as some others, giving compre­ 

hensive listings of U.S. Geological Survey publications are avail­ 
able under the conditions indicated below from the U.S. 
Geological Survey, Information Services, Box 25286, Federal 
Center, Denver, CO 80225. (See latest Price and Availability List.)

"Publications of the Geological Survey, 1879-1961" may 
be purchased by mail and over the counter in paperback book form 
and as a set of microfiche.

"Publications of the Geological Survey, 1962-1970" may 
be purchased by mail and over the counter in paperback book form 
and as a set of microfiche.

"Publications of the U.S. Geological Survey, 1971-1981" 
may be purchased by mail and over the counter in paperback book 
form (two volumes, publications listing and index) and as a set of 
microfiche.

Supplements for 1982, 1983, 1984, 1985, 1986, and for sub­ 
sequent years since the last permanent catalog may be purchased 
by mail and over the counter in paperback book form.

State catalogs, "List of U.S. Geological Survey Geologic 
and Water-Supply Reports and Maps For (State)," may be pur­ 
chased by mail and over the counter in paperback booklet form 
only.

"Price and Availability List of U.S. Geological Survey 
Publications," issued annually, is available free of charge in 
paperback booklet form only.

Selected copies of a monthly catalog "New Publications of 
the U.S. Geological Survey" are available free of charge by mail 
or may be obtained over the counter in paperback booklet form 
only. Those wishing a free subscription to the monthly catalog 
"New Publications of the U.S. Geological Survey" should write to 
the U.S. Geological Survey, 582 National Center, Reston, VA 
20192.

Note Prices of Government publications listed in older cat­ 
alogs, announcements, and publications may be incorrect. There­ 
fore, the prices charged may differ from the prices in catalogs, 
announcements, and publications.


